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1. INTRODUCTION 

Models of behavior can be constructed in at least three different ways. 

1. One can begin with a few empirical generalizations which, taken as postu- 
lates or axioms, lead deductively to a variety of testable predictions. 

2. One can postulate some internal mechanism as mediating the behavior 
and, after estimating the parameters of that mechanism, then predict a variety 
of other behaviors. 

3. One can actually investigate the internal workings of the organism, de- 
scribe these mechanisms axiomatically, measure the needed parameters, and 
deduce the behaviors. 

If the behavior in question is psychophysical, then the first two approaches 
call only for psychophysical data, whereas the third requires physiological 
data of some sort. A pure example of the last approach is rare; usually a 
physiological model is blended to some degree with a hypothetical model. 
One reason is that, even with animals, our clearest and most detailed infor- 
mation comes only from the peripheral nervous system, and so we are forced 
to speculate how that information is processed by higher centers. This chapter 
presents an example of this compromise approach for auditory psychophysics. 
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Examples of the other approaches can be found in this volume: (a) Falmagne; 
(b) Levine, Krantz; and (c) Graham and Ratliff. 

Perhaps the single most pervasive characteristic of psychophysical data is 
the inconsistency of subjects when answering most questions we ask them 
about simple stimuli. Somewhere, between the stimulus and the response, 
randomness enters. One hundred years of research, the most careful of 
methodological practices, and the best signal sources provided by modern 
technology have not reduced below 6 percent the separation in intensity 
needed for two 1000 Hz tones to be discriminated 75 percent of the time. For 
this reason, many theorists believe that a general theory of psychophysics can 
hardly avoid an explicit formulation of this randomness. Other theorists, 
most notably Stevens (1957, 1971), have argued that this 'n,oise,' although 
pervasive, is completely incidental to the main effects in psychophysics, and 
so it is best averaged away. The former group, and we are.in it, feel that the 
interlock between the global and local aspects of psychophysics is much more 
profound, although not as simple as some earlier theorists (Fechner, 1860; 
Luce, 1959; Thurstone, 1927) have suggested. 

Variability can intrude itself at five places: (a) in the physical signal itself; 
(b) in its transduction from physical energy into the pulsed 'language' of the 
nervous system; (c) in the various transformations imposed as the peripheral 
neural information wends its way through the central nervous system; (d) in 
the decision process which converts the available information into an answer 
to whatever question has been asked about the nature of the signal; and 
(e) in the processes that lead to the execution of a response. Different theorists 
have focused on particular sources of randomness, attempting to show that 
one of these accounts for most of the overall variability. For example, Hecht, 
Schlaer, and Pirenne (1942), in a classic study of visual thresholds, held that 
the quantum variability of a threshold light source coupled with quanta1 
losses prior to the retina were sufficient to account for the observed psycho- 
physical variability. Later (Sec. 10) we argue that in a simple reaction-time 
experiment to intense signals the variability of observed times is dominated 
by conduction times and synaptic delays and that essentially no measurable 
variability is added to it by the sensory or decision aspects of the process. A 
number of authors (including Thurstone, 1927; Tanner & Swets, 1954; the 
whole resulting school of signal detectability; Green & Swets, 1966; Luce & 
Green, 1972) have taken the view that in many situations it is unnecessary 
to partition the variability due to the first three sources-the signal, its trans- 
duction into a neural language, and its transmission in the nervous system 
up to the point where a decision is made-and for a number of experimental 
tasks and measures, usually those involving some aspect of discrimination, 
the total variability associated with these three sources is all that need be 
considered. For other tasks and measures, however, the variability introduced 
by the decision process itself or that added by the remainder of the response 
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process may play a significant role, as we discuss in Sections 4, 5, and 10. 
From this point of view, a key initial question is how the information is 

encoded when it reaches the decision center. Sections 2 and 4 of the chapter 
deal with this topic. Section 2 summarizes some peripheral physiological 
evidence concerning the coding of auditory information. Section 3 treats what 
an ideal device, making optimum use of this information, could do. Section 4 
advances some hypotheses, admittedly speculative, about the form that the 
sensory information takes as it is presented to the decision center. These hy- 
potheses are supported to some degree by comparing their predictions with 
psychophysical data from a detection experiment with response deadlines. 
Another detailed comparison of these predictions is carried out in Section 5, 
which discusses the speed-accuracy trade off. Sections 6 through 8 provide 
an account of the classical data on the discrimination of changes in intensity 
or frequency of a pure tone signal. Section 9 briefly discusses how still other 
sources of variability can influence psychophysical data, especially those data 
in which a number of response categories are employed. Section 10 continues 
with a discussion of how various parameters of the model can be measured 
from reaction-time data and an explanation of how another source of vari- 
ability can be estimated. 

2. THE PERIPHERAL NEURAL 
REPRESENTATION OF AUDITORY SIGNALS 

What we say here, and so in the rest of the chapter, pertains only to the repre- 
sentation of auditory signals. No comparable data for other modalities have 
yet been collected. We suspect that certain features of this auditory repre- 
sentation will be found in other senses, but many of the details will un- 
doubtedly differ in important ways. 

An auditory input signal is simply a continuous function of time, for 
example, it is pressure as a function of time. When one measures electrical 
activity in individual nerve fibers of the peripheral auditory nervous system, 
one does not see anything directly analogous to that function. Rather, each 
fiber conducts a train of electrical pulses of very brief duration and of approxi- 
mately the same voltage. At first sight, these pulse trains are highly irregular; 
sometimes they are obviously affected by changes in the signal; at other 
times, apparently, they are not. A good deal of very careful work over three 
decades, especially the last one, has led to some understanding of the exact 
nature of the encoding involved, although one still cannot predict from a 
limited set of observations on an individual fiber how it will respond to an 
arbitrary input signal. For our purposes here, however, it will suffice to 
have a reasonably detailed description of the neural response to a very 
limited class of signals, namely, pure tones. 
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It is important to realize that the pulses themselves do not directly carry 
information about the signal. For example, their size does not change system- 
atically with either signal intensity or frequency. Thus information about the 
signal must be carried either by the occurrence or by the absence of individual 
pulses, or by some aspect of their temporal pattern, or by the spatial pattern 
of activity over the whole auditory fiber bundle. Wever (1949, p. 128) sum- 
marized it well: 

The nerve impulse seems to be everywhere the same, regardless of the type 
of nerve in which it appears. The modes of variation of nerve transmission 
therefore are strictly limited. The following dimensions are generally regarded 
as exhausting the possibilities of representation by nerves of the physical char- 
acteristics of the stimulus: (a) the particular fiber or fibers set in operation, 
(b) the number of fibers excited at any one time, (c) the frequency of impulses 
in each fiber, (d) the duration of the train of impulses, and (e) the time relations 
of the separate impulses passing through different fibers. The problem of audi- 
tory theory is to show how these variables represent the properties of the 
stimulus and determine the nuances of auditory experience. 

Without going deeply into the details of the arguments, no one today 
believes that the mere occurrence of a pulse contains any information whatso- 
ever. One reason is that without any signal present, fibers fire spontaneously, 
sometimes at rather high rates. A second is that there is no sign of synchro- 
nization in the peripheral system which would make the absence of a pulse 
clear. So we turn to questions of temporal and spatial patterns. 

For temporal patterns, the first question to resolve is which aspect of a 
pulse train corresponds to intensity. The well-known fact that reaction time 
to signal onset decreases with signal intensity (Chocholle, 1940; McGill, 1960) 
strongly suggests that there must be some deep interplay between intensity 
and time in the nervous system. One obvious conjecture is that pulse rate 
increases as signal intensity is increased and everything else is held constant. 
Peripheral data on the cat (Galambos & Davis, 1943; Kiang, 1965, 1968) 
and on the squirrel monkey (Rose, Brugge, Anderson, & Hind, 1967) confirm 
that something of this sort is true, although it is not quite so simple. If we 
restrict our attention to pure tone signals, the following seems to summarize 
the situation. Each fiber has a characteristic signal frequency to which it is 
most, but not exclusively, responsive. At this frequency, there is a lower and 
upper threshold. Below the lower threshold, it fires at its spontaneous rate; 
between the two, the rate increases by a factor of from 2 to  10, reaching a 
maximum rate at the upper threshold; for more intense signals the rate is 
either maintained or drops somewhat. As the frequency deviates from the 
characteristic one, both thresholds rise and the maximum firing rate remains 
about the same. Looked at another way, a pure tone of sufficient intensity 
activates a particular set of fibers in the sense that it drives their firing rates 
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above their spontaneous rates. Changing the frequency causes some fibers to 
drop from the active category and others to enter it; increasing the intensity 
adds fibers to the active category. Thus, frequency change involves the sub- 
stitution of fibers (metathetic continuum); intensity change, either the addi- 
tion or the subtraction of fibers (prothetic continuum). This distinction was 
discussed by Stevens (1957) and is described fully by Wever (1949). 

It is clear, therefore, that both frequency and intensity are represented 
spatially. In addition, of course, intensity is represented temporally as a firing 
rate. The question remains what, if any, additional information about fre- 
quency may exist in the temporal representation. The only way to answer this 
is to examine the detailed statistical structure of the pulse trains in the pres- 
ence of steady, pure tone signals. Galambos and Davis (1943) were the first 
to do so with the care needed, and improved techniques have been employed 
by Kiang (1965) and his colleagues and by Rose et al. (1967). Kiang's group 
mostly used clicks, that is brief pressure pulses, as their stimuli. They con- 
cluded that to a first approximation the peripheral neural pulses form a 
renewal process in which the times between successive pulses are independent 
of one another and have the same distribution when the signal is constant. 
The times between neural bursts cluster at the reciprocal of the characteristic 
frequency of the fiber, indicating that the fibers are most likely to fire at only 
one phase of the essentially sinusoidal response produced by the brief stimu- 
lus. With no stimulus input the process appears to be approximately Poisson; 
i.e., a renewal process in which the distribution of interarrival times (IATs) 
between successive neural pulses is exponential. A deviation from the expo- 
nential occurs at 0 because very short (less than % msec) IATs appear to be 
lacking, presumably because of absolute refractoriness in the nerve. Increas- 
ingly, as various experimental artifacts have been removed, the data appear to 
be very well approximated by a Poisson process except for very brief times. 

Frequency information about a pure tone signal, at least for frequencies 
below 2000 Hz (which includes most of the relevant musical range), is also 
encoded in the pulse train, as has been demonstrated most clearly by Rose 
and his collaborators. This can be seen by looking at IAT distributions, of 
which Figures 1 and 2 are typical, provided the measurements are sufficiently 
precise (at least to 10OPsec). The distributions are startlingly multimodal, with 
one mode at about 0.5 to 1 msec and the others lying at multiples of the 
period of the input signal. We refer to the former as the 'sputtering' mode 
and to the others as 'normal' modes. Thus, for a 1000 Hz signal, the normal 
modes are 1 msec apart, for a 500 Hz signal they are 2 msec apart, etc. More- 
over, the ratio of the heights of the successive normal modes are roughly 
constant suggesting a geometric distribution having some constant proba- 
bility p of firing at each successive mode. The probability of the neuron firing 
exactly i periods after the last firing is p(l - p);-'. The smearing of these 
geometric modes may reflect the randomness in the spontaneous Poisson 
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FIGURE I .  
Distribution of interspike times on a single cochlear fiber of a squirrel monkey when the 
acoustic signal is a Pure tone of the intensities and frequencies shown. (Rose et al., 1967, 
Fig. 1.) 
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FIGURE 2.  
Same as Figure 1 ,  but for lower frequencies. (Rose et al., 1967, Fig. 4.) 

process which has been modulated by the sinusoidal signal input. Note that, 
contrary to common belief, there is no sign of refractoriness of more than a 
fraction of a msec. This is even shorter than the value suggested by Kiang 
(1965, p. 101). Further, the geometric parameter p is clearly an increasing 
function of intensity, at least over some limited range. 

For some purposes having to do with stimulus intensity, it is reasonable 
to smear the IAT distribution and to approximate it by an exponential. But 
one must be careful since the most probable IAT under an exponential 
density is 0 whereas it is l/f in Figure 1. If the nervous system ever computes 
l/IAT, this error of approximation can loom large (see Sec. 7). 

We may conclude that at the periphery, the intensity and frequency of pure 
tones of low frequency are both represented spatially and temporally in the 
nervous system. Discrimination mechanisms that draw only on the spatial 
representation are usually called place mechanisms; those that draw only on 
the temporal representation, periodicity mechanisms. An obvious question is 
whether discriminative behavior is based on one or both of these mechanisms. 
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The fact that reaction time is a strong function of intensity suggests that 
longer time samples are required with weak signals (slow rates) than with 
intense ones, which in turn suggests that some temporal sampling is involved. 
Furthermore, as we have verified empirically, the reaction time to either 
intensity or frequency discrimination of the same quality (say, d' = 1) is the 
same, suggesting that comparable samples are taken for the two tasks. Other 
data below will reinforce our belief that much discriminative behavior de- 
pends on temporal mechanisms. It is much less clear whether a place mecha- 
nism plays any role whatsoever for low-frequency signals. It is entirely possi- 
ble that the increase in total activity with intensity serves merely to increase 
the total sample size available. Wever (1949) developed a theory in which 
periodicity mechanisms dominate at low frequencies and place ones at high 
frequencies. Our calculations in Sections 6 and 8 can be thought of as elabo- 
rating the behavioral predictions of his periodicity mechanisms. 

The kind of peripheral encoding of information just described sets firm 
limits on what the nervous system can possibly do. In whatever way it may 
ultimately transform this information, it can never decrease the amount of 
noise that is inherent in the stochastic representation of the signals. In par- 
ticular, it can never undo the temporal smearing of instantaneous values of 
intensity. One approach, then, is to formalize the peripheral representation- 
this we do at the end of this section-and then ask what is the best that an 
ideal machine, using both the temporal and spatial representations, could do 
with that information. We discuss this approach in the next section, but it 
appears to be difficult to work it through to a definitive conclusion. 

A more adventurous approach, which we undertake in Sections 4 through 
8, is to guess what the rest of the (relevant) nervous system does when making 
decisions in terms of information encoded temporally, ignoring the spatial 
representation. This approach is both more specific, and so entails more de- 
tailed predictions, and far more speculative, and so probably is wrong. The 
question, of course, is not whether it is wrong in detail, which it is almost 
bound to be, but whether it is wrong in spirit and so in qualitative character. 

We next formulate two models for the spike train on a single neuron. Each 
of these models describes imperfectly the data of which Figures 1 and 2 are 
typical. The defects are discussed as the models are presented. 

In the first we assume that the pulse train is generated by a nonstationary 
Poisson process whose hazard function waxes and wanes with the signal 
amplitude. The particular hazard function postulated by Siebert (1970) is of 
the form 

where t is time, fo is the characteristic frequency of the fiber, I a A2 is the 
intensity of the pressure wave, and f is the frequency; G and H are functions 
that must be specified, although we will not do so here. Such a process is 
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obviously phase locked to the sinusoidal signal; it is not a renewal process 
because successive IATs are not independent; but it is multimodal with modes 
at 0 and at multiples of the period of the signal. Thus, it accounts for the data 
almost exactly except, according to the model, the sputtering mode should be 
at or near 0 instead of to 1 msec. The reason for this discrepancy is simply 
that the model does not provide for any refractoriness whatsoever. 

In the second model we assume that the process is a renewal one in which 
the IAT random variable is of the form 

I 
IAT = - + X, 

f (2) 

where I is geometrically distributed, i.e., 

with p some unknown function of intensity I and frequency f. The data 
suggest that the distribution of X is symmetric and bounded by an interval of 

1 
the form (-,!, '). 0 < r < 5. In fact, it is reasonable to suppose that there is 

f f  
a symmetric density function g on (- 1, 1) with the property that 

and for a signal of frequency f that 

Observe that by symmetry 

and 

where 

Combining Equations 2 and 3, we obtain for the density of IATs, 

(0, otherwise. 
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This renewal model has two major drawbacks. First, it has no 'sputtering' 
mode at all, that is, no IATs appreciably shorter than l/f. So when we study 
discrimination in terms of it we are implicitly assuming that the nervous 
system is able to filter out the Poisson noise that shows up as the 'sputter- 
ing' mode and that it carries out all of its computations on the normal modes. 
Exactly how this filtering is done we do not attempt to say. One plausible 
possibility is that some higher order neurons have a refractoriness that is 
slightly less than the period of the sinusoid. This amounts to a mild form of 
a place mechanism at some higher order center. Second, by assuming a re- 
newal process (independent IATs) we have no mechanism to maintain the 
phase locking of the process to the signal. This is certainly wrong, but whether 
it matters is another question. If the nervous system actually bases its deci- 
sions on the IATs, as we shall assume, rather than paying attention to  coin- 
cidences of pulses over different fibers, then the phase locking is an incidental 
matter of minor importance. 

3. IDEAL DISCRIMINATION OF INTENSITY 
AND FREQUENCY 

Siebert (1968, 1970) has pointed out that the CramCr-Rao inequality (see 
below) is the important key to determining the possible limits of discrimi- 
nability. I t  establishes the limit on the discriminability of a small change of 
intensity, AI, or of frequency, A f,  in terms of the inherent statistical variability 
of the neural representation of the signal. Of course, we do not know a priori 
how well the organism actually approaches these theoretical limits. Still, the 
calculation could be useful in establishing an upper bound on the performance 
and, depending on how close actual performance is to this bound, it might 
establish constraints on the possible hypotheses we may entertain concerning 
the actual detection process. 

The form of the CramCr-Rao inequality used by Siebert (1970) is rather 
more general than the most general statement given in CramCr (1946).' Sup- 
pose n processes are each sampled, the ith yielding a vector of K ;  observations 
(where K ;  may be a random variable), say xi = (xi], . . . , xiri). Combining 
these, we may use the abbreviation 

We assume that their joint probability density $(x, K ;  8 exists for each value 
of some parameter [ (which we will take to be either I or f ). Assuming that 

'Our first draft of this section included a number of misinterpretations of Siebert's 
arguments, and we are deeply grateful to him for showing us exactly how the argument 
proceeds. The proofs included in Notes 2 and 3 are taken from his letters to us. 
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the density function is sufficiently regular (precise conditions are well known) 
and that g(x, K )  is an unbiased estimator of [, then the variance of that esti- 
mate must satisfy2 

where 

Any estimator for which the equality holds in Equation 8 is called eficient, 
and any such discrimination mechanism is called ideal. 

If, further, the n processes are independent in the sense that for each [, 

then one can show3 that Equation 8 can be replaced by 

'By definition of an unbiased estimator, 

Differentiate this with respect t o  [ which, when + is sufficiently smooth, can be carried out 
to  the right of C J, 

Assuming that $ is sufficiently well behaved so that Schwarz' inequality holds, 

= [ / ) 2 d x ] 2 .  QED. 

a By independence, 

When substituted in Equation 8 we get squared terms, which constitute the right side of 
Equation 9, and cross-product terms which we now show are 0: 



Siebert based both of his analyses on Equation 8, but he proceeded some- 
what differently in the two papers. In 1968, he assumed that for all fibers i 
K~ = 1 and xil is the number of pulses observed on fiber i during some fixed 
listening interval when signal (I, f) is presented. Assuming that the fibers are 
independent, a plausible assumption which at present is difficult to justify or 
reject, and assuming that the process on each fiber is Poisson, so that the 
distribution of IATs is exponential, it is easy to write an explicit formula for 
$ which can then be substituted into Equation 9. This does not really tell us 
anything until we assume how the Poisson parameters depend on I and f and 
how they vary over fibers. Siebert made a number of assumptions which were 
motivated by his attempt to fit some physiological data, and from these he 

4 
concluded A I  = a' satisfies Weber's Law, 

and that A f = uj also satisfies Weber's Law, 

where the constants A and B are independent of I and f and are the same in 
the two equations. We do not pursue this further because, although it may be 
a reasonably satisfactory way to analyze intensity discrimination, it is surely 
inappropriate for frequency since the Poisson assumption completely ignores 
the frequency information available on single channels. Fundamentally, this 
model denies any role to temporal mechanisms. 

To overcome this limitation, Siebert (1970) undertook a more complete 
analysis in which temporal mechanisms were incorporated. Obviously, a 
count of pulses on each channel will not reveal the periodicity, so the basic 
sample of information on each fiber i must be the times xil, . . . , xi,; of the 

= 0. QED. 
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pulses observed during a listening interval 6. Observe that the sample size 
K~ is not fixed, but rather is an RV that depends both on the underlying 
probability mechanism and on 6. Assuming that these processes are Poisson 
with a hazard function ~ ~ ( x ;  I, f ), then it is easy to show that the probability 
density of K spikes occurring at the unordered times xi j ,  j = 1, . . . , K ~ ,  is 
given by 

Assuming independent fibers and an efficient estimator, we obtain from Equa- 
tion 9 

To evaluate Equation 10, Siebert substituted in Equation 1 for wi and he 
assumed forms for the functions G and H which accord well with current 
physiological knowledge. From this, he deduced 

He then concluded that the first of these terms corresponds to the contribution 
of place information and the second to periodicity information. The argu- 
ment is that if one assumes a spike train in which there is no periodicity 
information (achieved by deleting the cosine term fiom Eq. I), then only the 
first term of Equation 11 arises; whereas, if one assumes that all of the spike 
trains are identical and so there is no place information (make G a constant 
function in Eq. I), then only the second term arises. Choosing typical values 
of 6 = 0.1 sec, f = 1000 Hz, and A = 300, the terms of l/Af have values 
of about 0.3 sec2 and lo4 sec2. Clearly, the periodicity information is far 
superior to place; however, the observed data of Af approximately equal to 
1 Hz are of about the same equality as the place information. And so Siebert 
(1970, p. 727) concludes: 

1) the brain does not make full, efficient use of the periodicity information 
coded in the auditory nerve firing patterns, and 

2) there is adequate information in the place pattern alone to account for 
behavior, if it is used efficiently. 

If one conjectures some inefficiency in the brain, as seems plausible, the 
periodicity mechanisms are favored. In the following sections we show that a 
reasonable, but surely inefficient, periodicity decision scheme seems to yield 
a satisfactory prediction of both A I  and Af as a function of I and f. 
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4. HYPOTHETICAL CENTRAL REPRESENTATION 
AND DECISION MECHANISM 

For the remainder of the chapter we use the renewal process model, with the 
simple probability laws given in Equations 2 through 7, rather than the 
Poisson model. What is complicated about this model is how intensity and 
frequency determine which fibers are active and how they affect the geometric 
probability p in an active fiber. Although complicated at the periphery, per- 
haps by the time the information is consolidated at a later decision stage it 
is simplified. We shall postulate that when it reaches the decision center the 
information continues to be in the form of Equations 2 through 7, but that 
it is simpler in two major respects. 

First, we suppose that all active channels-we do not use the word 'fibers' 
because our assumptions are now hypothetical and functional, not necessarily 
anatomical~bare statistically identical. This seems a relatively minor ideali- 
zation in which we replace a set of different channels by the same number of 
identical average ones. There is no basic difficulty in dropping this assump- 
tion, but to do so would add a lot of extra baggage which, at this point, does 
not seem really useful. We shall continue to suppose, as is true at the pe- 
riphery, that the number of active channels is a function both of intensity 
and frequency. In Section 7 we will be led to assumptions about that 
dependency. 

Our second idealization is much more serious. At the periphery, pulse rates 
change by only a factor of from 2 to 10 over a relatively narrow intensity 
range for any given fiber. We have no very clear idea how this information is 
combined in order to give information about the full dynamic range. We 
shall, in any event, suppose that the combination is such that at the central 
mechanism p is a strictly increasing function of I. Put another way, by Equa- 
tions 2, 3, and 5, 

is a decreasing function of I. In Section 7 we discuss more fully the form of 
this function which obviously must compress the physical range of 101° into 
something manageable as firing rates. This assumption means that estimates 
of p, which by Equation 12 is determined by pulse rate for f fixed, provide 
estimates of I. 

If one tentatively accepts Equations 2 through 7 together with these two 
idealizations as an adequate description of the form in which the information 
exists when decisions are made, our next task is to  consider the nature of the 
decision rules employed. Our first assumption will be that the decision rule 
is sensitive only to the pulse trains and completely ignores all place informa- 
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tion. Of course, it takes into account the dependence of the number of active 
channels on intensity and frequency, for that will alter the sample sizes of 
IATs on which to base decisions, but the decision procedure will completely 
ignore which channels are active. This is a radical assumption, and if we are 
unable to account for the psychophysical data, it is surely one to be 
reconsidered. 

Now consider possible decision rules for intensity. According to what we 
have assumed, intensity is reflected solely by the pulse rate, and so any rule 
must involve some estimate of that rate. For example, if the subject is to 
decide whether a more or less intense signal has been presented, the simplest 
rule-so simple that some feel it should not be called a decision rule--consists 
of just comparing the estimate of the rate with a criterion, much as in the 
theory of signal detectability. More complex rules involve some form of in- 
creased sampling whenever the estimate is near the criterion, but we do not 
explore these here (except for a sequential rule that arises naturally in our 
analysis of simple reaction time in Sec. 10). Obviously, a sequential rule intro- 
duces more variance into the decision time than does a criterion one, and so 
it will be important to decide which rule is correct if we are to give a correct 
account of response times. With the simple criterion rule, the only remaining 
theoretical question is how the pulse rate is estimated. There are two extreme 
ways to do this. One is to fix a time interval and to count the total number of 
pulses that arrive during that time on all of the active channels; the estimated 
rate is the mean count per channel. Another is to fix a count per channel and 
to time how long it takes for that number of pulses to arrive on each channel; 
the estimated rate is the reciprocal of the mean time per IAT per channel. 
Using the former rule, one counts pulses; using the latter, one times IATs. 
For this reason, models based on the former are called counting ones (McGill, 
1967), and those based on the latter are called either timing (Luce & Green, 
1972) or clocking models (Uttal. & Krissoff, 1965). 

One might guess that these two estimation schemes would make little dif- 
ference in behavior but, as we show below, that guess is wrong. Moreover, 
it appears that both rules are available to subjects. To establish these points, 
consider an absolute identification experiment in which one of two tones of 
different intensities is presented on each trial and the subject is to identify 
which was presented. Suppose further that each signal remains on until he 
responds (so that, from a theoretical point of view, we do not have to worry 
about running out of signal), but let us put the subject under pressure to 
respond rapidly as well as accurately. The time pressure can be effected by 
a deadline with fines for late responses, and accuracy can be affected by a 
payoff matrix. We analyze this experiment using both the counting and timing 
rules. 

First consider the mean response time. It is composed of two parts, the 
mean decision delay and the mean of all other delays. Let the latter be denoted 



by r. It is evident that, according to the counting rule based on a fixed listening 
interval 6, the decision time is independent both of the signal and the response. 
Since r is also, we predict that the MRT = P + 6 is the same in all four cells 
of the signal-response matrix. It is equally evident that according to the timing 
rule, the more intense signal should have faster response times than the less 
intense one because of the difference in pulse rates. In fact, let us suppose 
that K IATs are collected per channel and that J channels are active. Then the 
distribution of decision times is the slowest of J samples from the distribution 
of the sum of K independent IATs. If for signal i = 1 or 2 we write Mi = 

E(IATi) and Vi = V(IATi), it is easy to see that 

where h(J, K, cr) is the mean decision time when E(IAT) = 1 and V(IAT) = u2. 
We do not need to derive the form of h(J, K, cr) here, although we will do so 
in the next section. suppose that MI > M2, then eliminating h(J, K, cr) from 
the equation (we assume that the differences in intensity are so small that we 
can neglect the differences in J and cr), 

This we can test by varying the deadline and plotting the two signal MRTs 
against one another, checking for linearity and the value of the slope. 

A second prediction is obtained from the two models by considering the 
ROC curves [plot of P(l I sl) against P(l 1 s2)] obtained with a fixed deadline. 
To carry out this analysis we assume that the expected value M and variance 
V of the IAT distribution are related so that both V and M3/V are strictly 
increasing functions of M. This is true, for example, in the exponential case 

1 
where V = M2 and for Equations 2 through 7 provided4p 5 - [l - (38)'12]. 3s 

Consider the timing rule first. Assuming that JK is large, the central limit 
theorem implies that the sum of the IATs is approximately normally dis- 
tributed with mean JKM and variance JKV. Using the probability cutoff of c, 
the corresponding z score is 

1 Ma ' Observe, M = E(1AT) = - and V = q*O = MZ(q + pa8) and so - = 
1 

pf Pf v dq + p20)f' 
For f fixed, M increases as p decreases. As is easily shown by computing its maximum, 

1 dq +PO) decreases with p for p 2 - [l - (1 - 38)'12] and V increases everywhere. For 
30 

0 = 0.2, this bound is 0.61, which covers the known data. 
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Considering two signals with mean IATs of M1 > M, (i.e., the second signal 
is more intense), the ROC curve (in z scores) is obtained by eliminating c: 

Since V is a strictly increasing function of M, the slope of this ROC curve 
is > 1. In the exponential case, it is Ml/Mz. 

To work out the prediction for the counting model, we note that in a 
renewal process, the number N of pulses counted in a time 6 per channel is, 
asymptotically as J6 -+ a, given by 

(Parzen, 1962, p. 180). So the z score is of the form 

whence the ROC curve is 

Since M3/ V is an increasing function of M, the slope is < 1. In the exponen- 
tial case it is (M2/M,)lI2. 

Green and Luce (1973; also see Luce, 1972) ran the above experiment using 
a 1000 Hz signal in noise and noise alone. When the deadline was varied, the 
MRTs were virtually identical except for the very long deadlines (see the next 
section), and with the deadline fixed and the payoffs varied, the ROC curve 
was linear with slopes of 0.92, 0.90, and 0.69 for three subjects. Thus, the 
counting rule is more appropriate for this experiment than the timing one. 
When, however, the experiment was slightly altered so that the deadline 
applied only to those trials on which the more intense signal was presented, 
then both the MRT and ROC curves were approximately linear and the pairs 
of MRT and ROC slopes for three subjects were: (1.34, 1.30), (1.48, 1.47), and 
(1.38, 1.37). Obviously, the timing rule is now more appropriate than the 
counting one. Moreover, the close agreement of the values suggests V = M2, 
in which case the exponential distribution is approximately correct. 

Obviously, considerable care is going to have to be taken both experi- 
mentally and theoretically to make sure whether a timing or counting model is 
appropriate in any given context. Our experience to date with these models 
suggests that the timing ones are generally more plausible except in situations 
when it is distinctly to the subject's advantage to employ counting behavior. 
Such an advantage obtains when we impose a uniform deadline on all re- 
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sponses, as just discussed, and when we use very brief signals whose presence 
is well marked, as is typical of many psychophysical designs. 

5. SPEED-ACCURACY TRADE OFF 

The contrast between the counting and timing decision rules is nicely illus- 
trated by the different trade off they predict between speed and accuracy. 
Speed is, of course, measured by MRT. Accuracy can be measured in several 
ways. Provided that the data are fairly linear on an ROC plot in z scores, one 
of these is d', i.e., the z2 coordinate of the ROC curve corresponding to zl = 0. 
We see from Equation 16 that for the counting model 

d' = A6112, 
where 

As the listening interval 6 is increased by manipulating the deadlines, both d' 
and MRT = P + 6 should increase with the trade off being of the form 

d' = { A(MRT - ?)'I2, MRT > P, 

0, MRT < 7. 

In like manner, Equation 15 yields for the timing model 

where A is given in Equation 18, and the expression for MRT was derived in 
Equation 13. Again, increasing the deadline should increase K and, hence, 
both d' and MRT. To derive the exact form of the trade off, we must see 
how h(J, K, a) depends on K. Assuming a train of pulses with mean 1 and 
standard deviation a for the IATs, and letting +. denote the distribution of 
the (K + 1)st pulse, we have by definition 

Assuming that +. is approximately normal, which by the central limit theorem 
it certainly is when K is large, it is easy to see that 

where H(J) is the mean of the largest of J normaily distributed RVs with 
mean 0 and variance 1. selected values are H(2) = 0.56, H(10) = 1.54, 
H(100) = 2.51, and H(1000) = 3.24. Substituting in Equation 13, 
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where we have written the right side so that the first term on the right corre- 
sponds to the irreducible minimum MRT when K = 0. Since K = 0 implies 
no information (d' = O), the first term also describes the intercept in an 
equation relating speed and accuracy. This suggests introducing the variable 

solving for K in Equation 2 1, and substituting that in Equation 20, which yields 

where 
B~ = V;/~H(J)/M~. 

Comparison of Equations 19 and 22 reveals three differences in the two 
models. First, in the counting model the function starts at 7, whereas in the 
timing model it begins later, at F + Mi + Vi'2H(J). Second, in the counting 
model there is only a single function since MRTl = MRT2, whereas in the 
timing model there are two distinct functions corresponding to i = 1, 2. And 
third, in the timing model the initial growth of the function corresponding 
to the weaker signal (i = 1) is (Ml/M2)ll2 times that of the counting model 
and that of the stronger signal is that much again, or Ml/M2, times that of the 
counting model. This means that a plot of d' versus mean reaction time for 
the timing model should begin later than that of the counting model, but it 
should grow considerably more rapidly. 

Because we collected data for a complete ROC curve at only one deadline, 
the values of d' at other deadlines were inferred by passing a line with the one 
estimated ROC slope through the single observed point at each deadline. 
According to both the counting and the timing models (Eqs. 15 and 16) the 
ROC slope should be independent of the deadline (6 or K), so this method of 
estimation does not favor either model. 

The data are shown in Figure 3. The first panel includes the data of three 
observers run with the deadline applied on all trials. The trade off appears 
to be substantially the same for all three, and the value of F is about 150 msec. 
The growth of the function is more nearly linear than the power of 
MRT - F, as was predicted; we return to this discrepancy shortly. The other 
three panels show another three observers run with the deadline applied only 
to the signal, i.e., to i = 2. Again, they are similar to each other: the inter- 
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PlGURE 3 .  
Plots of d' versus MRT. The upper left panel combines the data for three observers when 
the deadline applies to all trials. The other three panels, one per observer, plot d' versus 
both MRTs and MRT, when the deadline applies only to signal trials. (Green & Luce, 
1973, Fig. 11.) 
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cepts of the functions are well over 200 msec and all of the functions rise dis- 
tinctly more rapidly than in the first panel. Qualitatively, at least, these re- 
sults are in excellent accord with the predictions of, respectively, the counting 
and timing models. 

A direct numerical comparison is not possible for several reasons. First, 
different observers were used in the two experiments. Second, the predicted 
speed-accuracy trade off for the timing model requires estimates of Mi, Vi, 
and J, which we do not have. And third, the predicted square-root form for 
the speed-accuracy trade of the counting model was not substantiated by the 
data. There are at least two possible reasons for this discrepancy. First, esti- 
mates of d' near 0 are very unstable, and it is conceivable that the small d's 
in the region of 150 to 200 msec are in fact all really zero, in which case the 
square-root growth is not a bad approximation. Such an explanation is, 
however, inconsistent with our conclusion that the intercepts for the two 
experiments are different. Second, for long durations it is clearly to the sub- 
ject's advantage to switch from a counting to a timing mode: he will thereby 
increase his accuracy. There is some suggestion of such a change in that, at 
the longest deadlines, the difference between MRT, and MRT2 is not zero. 
For example, at 2000 msec it is 56, 65, and 9 msec for the three subjects. This 
suggests that at least two of the subjects were mixing the counting and the 
timing modes at the long deadlines. The degree of departure is, however, less 
than one would expect if they were trying to optimize their accuracy payoffs. 

A number of authors, using various techniques to manipulate or classify 
response times, have examined the speed-accuracy trade off. Taylor, Lindsay, 
and Forbes (1967) predicted that d'2 should be approximately linear with 
MRT and they confirmed it in data of Schouten and Bekker (1967). Other 
closely related studies are those by Fitts (1966), Lappin and Disch (1972), 
Pachella and Fisher (1972), Pachella, Fisher, and Karsh (1968), Pachella and 
Pew (1968), and Pew (1969). 

In the case of readily detectable signals, Ollman (1966) and Yellott (1967) 
proposed a quite different, two-state model to account for the speed-accuracy 
trade off. They assumed that the subject chooses on each trial either to re- 
spond to the signal onset, in which case he is fast and inaccurate (chance 
level), or to wait until the signal is positively identified, in which case he is 
slow and accurate. By varying the probability of waiting, a trade off is effected. 
This is known as the fast-guess model. Without formalizing the model and 
working through the algebra, the following relation can be derived. Letting c 
(for correct) denote the 1 1  and 22 cells and e (for error) the 12 and 21 cells 
in the stimulus-response matrix, then 

PcMRTc - P,MRT, = A(Pc - P,), 

where A is a constant and 
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We evaluate the same quantity for our two models, again omitting the 
algebra. For the counting model, 

Since PC - P, increases with 6, we see that an accelerated function is pre- 
dicted rather than a linear one. For the timing model, 

The first term is simply the linear prediction on the fast-guess model, and the 
second one increases with K and so with PC - P,, again yielding an accelerated 
function. Observe, however, that unlike the counting model, the degree of 
acceleration is a function of signal strength, Mi. For intense signals (small 
Mi), it is negligible and so we should obtain the linear relation ; for weak ones, 
however, it should be convex. 

The data for both weak and intense signals in the experiment with a dead- 
line imposed on all trials (both i = 1 and 2) are shown in Figure 4, and the 
data for weak signals in the experiment with a deadline only on the more 
intense signal (deadline for i = 2 only) are shown in Figure 5. Obviously, the 
fast-guess model is wrong for weak signals since, for both types of deadline, 
the curves are decidedly convex. Qualitatively, both sets of data for weak 
signals agree with both the counting and timing models. The only data we 
have for intense signals come from the experiment where, for weak signals, 
we concluded earlier that the counting model held. The strong signal data 
appear linear and hence are consistent with only the timing model. I t  appears, 
therefore, that with increasing signal strength there is a tendency to switch 
into the timing mode. Presumably this is the more natural mode of behavior, 
and there is little advantage to using counting when the maximum number of 
IATs that can be collected per channel has a high probability of being within 
the deadline for either signal because Mi is so small. 

Our tentative conclusion is that subjects use the timing rule except when 
it is decidedly disadvantageous to do so, in which case they shift to the count- 
ing one. Examples of experiments where the timing rule is disadvantageous 
are those involving weak signals that are either of short duration or to which 
fast responses (and so a short sample of the signal) are encouraged. As we 
shall see below, several other types of experiments appear to be accounted 
for by timing rules. 
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6. DISCRIMINATION FUNCTION 
FOR INTENSITY 
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One ultimate test of a theory of neural coding is its ability to account for 
psychophysical data on the limits of discriminability for small changes in 
both the frequency and the intensity of a sinusoidal signal. As we show here 
and in Section 8, the theory does indeed make such predictions. Although one 
does not anticipate any difficulty in comparing these predictions with the 
empirical data-since surely after a century of study these basic relations are 
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FIGURE 4. 
Fast-guess analysis of speed-accuracy data when the deadline applies to all trials. The 
open points are for weak signals; the solid ones, for strong signals. (Green & Luce, 1973, 
Fig. 2.) 
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5 - 5  
FIGURE 5. 
Fast-guess analysis of speed-accuracy data (weak signals) when the deadline applies to 
signal trials. (Green & Luce, 1973, Fig. 5.) 
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well established and generally accepted-nothing could be further from the 
truth. 

It has long been known that a variety of intensive stimuli obey Weber's in 
the form 

I I I I I I I I 1 01 

- 
10 Log (P INo )  = 20  - 

0 0 s  4 0 A 
- - 

OBS 5 A 

OBS 6 A -  - 

- - 
0 

A - 
- 

A 
0 

- a - 

- - 43 

- - 
A 

- - 
0 

Q 

- - 

A 
- - 

0 

I 
0.2 0.4 0.6 0.8 1.0 

where I denotes a reference intensity, A1 the deviation from I that is necessary 
to achieve a fixed level of discriminability, and A and B are constants. 
Hawkins and Stevens (1950) showed that the signal energy to noise power 
density needed for a sinusoid to be just detectable in wideband noise is re- 
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markably constant over a range of about 90 dB. Miller (1947) showed that 
the just detectable increment in a wideband noise is some constant fraction 
of the background noise once the background is slightly above the absolute 
threshold. On the other hand, the detection of an intensity increment in a 
sine wave has never exhibited this relation over any reasonably large range 
of intensity. Rather, if one plots A I / I  versus I, the function begins at some 
large value and generally decreases as the intensity of the background I is 
increased (Campbell & Lasky, 1967 ; Dimmick & Olsen, 194 1 ; Green, 1967 ; 
McGill & Goldberg, 1968; Reisz, 1928; Viemeister, 1972). 

McGill and Goldberg (1968) were the first to discuss carefully this deviation 
from Weber's law-what they call the near miss to Weber's law-and they 
pointed out that it is well approximated for large I by an equation of the 
form 

where B and c are constants independent of I. The data are fit with c about 
0.90. The explanation they offer is that the small deviation from Weber's 
law arises because of the nonlinear dependence of the number of neural spikes 
in a counting model as a function of intensity. 

Another interpretation of these data has recently been suggested by Vie- 
meister (1972), who seems to have shown empirically that the reason for the 
deviation from Weber's law is wholly different from a neural explanation. 
He noted that as intensity is increased, the inherent nonlinearity of the ear 
introduces amplitude distortion contributions at the various harmonics of 
the signal. At low intensities, the energy at each harmonic is considerably 
smaller than at the next lower harmonic. In fact, at sufficiently low intensities, 
all harmonics higher than the fundamental are inaudible. However, as the 
intensity of the fundamental is increased, the rate of growth is faster the 
higher the harmonic. For example, if the distortion follows a square law, then 
the amplitude of the second harmonic grows as the square of the amplitude 
of the primary. And so a 1 dB change in the primary produces a 2 dB change 
in the second harmonic. Thus, at the point at which the second harmonic 
becomes audible, it is better to use it in making discriminations because the 
change in dB is larger there than at the fundamental. Similar arguments apply 
to the other harmonics-an n dB change occurs at the nth harmonic. Thus, 
as the stimulus is increased in intensity, if the subject moves from harmonic 
to harmonic as each becomes audible, he will clearly do better than Weber's 
law even if that law applies to discrimination of the primary. 

Viemeister analyzed existing data on amplitude distortion to see if this 
argument is viable, and it is. So he performed the following direct test of it. 
If this is what the subjects are doing and if one can make it impossible for 
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them to do so, then they should exhibit Weber's law. He used high-pass mask- 
ing noise (with its boundary above the fundamental but below the first har- 
monic) to obscure the harmonics, and found Weber's law to be almost exactly 
satisfied. Despite the fact that his experiment has not been replicated, we find 
the basic logic compelling. Nonetheless, we work out the predictions of the 
present theory. A more complete discussion, a counting alternative emphasiz- 
ing and using data other than Reisz' is given by Luce and Green (1974). 

We now compute how AI depends on I and f in the timing model. Usually 
AI is defined to be that stimulus increment producing 75 percent correct de- 
tections in a two-alternative forced-choice design, and this is very close to 
d; = 1. From Equation 15 we know that di is given by 

From Equations 2 through 7, 

and 

where q = 1 - p and 8 E 0.2 is a measure of the smearing of the modes (see 
Eq. 6). For p I x, the approximation is obviously good. Substituting and 
setting d' = 1 yields 

To calculate AI, we must first determine how p depends on I.  If we approxi- 
mate the IAT distribution by an exponential (parameter P )  displaced by the 
amount l/f from the origin, then equating means it is easy to see that 

AS we show empirically in Section 10, reaction-time data strongly suggest 
that p  is a power function of intensity-at least for low intensities. Letting po 
be the probability corresponding to the threshold intensity lo at frequency f, 
we may therefore rewrite the above equation and the empirical hypothesis as 
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FIGURE 6. 
A l l 1  versus I with f as a parameter. The data are taken from Reisz (1928). The theoretical 
curves are Equations 27 through 30 with the following parameter values: 7 = 0.20, 
7 =0.10, A o = 0 . 6 0 s e c , ~ o =  l , ~ ,  = 25 ,J0=  17.10, B =  1.246. 

It then follows readily that 

Thus, we now need to see how ~ J K  depends on I and f. For the present we 
simply write down the three equations that we use in our calculations; their 
partial justifications are provided in the next section. 

. = {  (KO+ 1)Aopf - 1, K 5 Km, 
K~ , otherwise. 

(30) 

Using the parameter values shown in the caption of Figure 6 and substi- 
tuting Equations 28 through 30 into Equation 27 yields the family of curves 
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shown in Figure 6. The data points are those of Reisz. We discuss some of 
the choices of the parameter values as we 'derive' Equations 28 through 30. 

7. THE DEPENDENCE OF p, J, AND K 
ON I AND f 

To arrive at the preceding three expressions, we make three rather speculative 
hypotheses which have very incomplete experimental support. 

1. The neural criterion of activity in a channel, and hence the criterion for a 
sensory threshold, is characterized by E(1AT) = Ao, where A0 is a constant that 
has to be estimated. 

In whatever way the nervous system decides whether or not a channel is 
active, it seems plausible that the decision is based solely on sample of activity 
from that channel. Since the only information available from a renewal pro- 
cess is contained in the IATs, the criterion must be based on them and 
certainly one of the simplest is merely to use the mean IAT. If this were true, 
then except for a possible small effect due to changes in J with I and f (Eq. 29), 
the MRT at threshold should be independent off. The small amount of data 
that we have collected seem to support this; however, a more extensive study 
is needed. 

Using the fact (Eq. 12) that E(IAT) = I/pf and the hypothesis that at 
threshold E(1AT) = Ao, Equation 28 follows immediately from Equation 26. 

The only real difficulty we have had in choosing acceptable parameter 
values is with Ao. According to Equation 21, 

MRT 2 P + Ad1 + KO). 

Using KO = 1 and A. = 600 msec, as in Figure 6, and (from Sec. 5 or from 
simple RT data with intense signals) P = 150 msec, we see that MRT is not 
smaller than 1350 msec-in fact, it is considerably larger since the inequality 
is crude. Our RT data at threshold suggest a value of about 1000 msec. Of 
course, our data were collected some 45 'years after Reisz' and used a very 
different discrimination technique, so we cannot be certain whether or not 
there is a real difficulty. 

Our second hypothesis is? 

Note added in proof. Since writing this paper, our views on modeling discrimination data 
have changed in important ways. First, Reisz' data resulted from an unusual experimental 
procedure, one not particularly well modeled by the present considerations, and unlike all 
later intensity discrimination data they exhibit a strong dependency on frequency. Second, 
the later data all used relatively brief duration signals, suggesting that a counting model is 
appropriate. Luce and Green (1974b) fit the obvious one, using hypothesis 1 and constant 
values ford and J; they had no need, therefore, for hypotheses 2 and 3. Third, and perhaps 
most important, a detailed study of magnitude estimates reported by Green and Luce 
(1974) suggest that the situation is actually somewhat different from, and much more inter- 
esting than, the conjectures that follow. See footnote 6 and also Luce and Green (1974a). 
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2. When a subject is asked to magnitude estimate a signal, he collects K IATs 
on each channel, forms the reciprocal of the total time on each channel, adds 
these numbers over all active channels, and then multiplies that by a constant and 
emits the result as his magnitude estimate. 

This hypothesis is a special case of the more basic hypothesis that the sub- 
ject interprets magnitude-estimation instructions as a request to estimate and 
report the neural pulse rate. If so, there are a number of ways in which it 
might be estimated. For example, we assumed earlier (Luce & Green, 1972) 
an exponential IAT distribution and that the times were summed over chan- 
nels prior to forming the reciprocal. In that model, magnitude estimates are 
reciprocals of a RV with a gamma distribution of order JK. Because JK is 
necessarily large, the resulting distribution should have a stable mean and 
variance. Data we have collected make us doubt whether the variance really 
is very stable. This could arise if K were small, 2 or 3, and if the reciprocal were 
formed on each channel individually before summing. For example, with 
K = 2 the theoretical variance of the reciprocal of a second-order, gamma- 
distributed variable does not exist. The trouble arises, of course, because the 
exponential places so much density at 0 which the reciprocal maps into a,. 
These observations have led us to think, first, that maybe only a very small 
number of IATs are collected on each channel; second, that the reciprocal is 
computed for each channel separately; and third, that for theoretical ME 
calculations the exponential distribution is a very poor approximation to 
Equation 7. Some indirect support to the idea that only a few IATs are col- 
lected per channel is provided by the studies of Stevens (1966) and Stevens 
and Hall (1966), in which it was shown that auditory magnitude estimates 
reach their maximum value when the signal duration is about 150 msec. 

In working out the magnitude-estimation distribution using the IAT model 
of Equations 2 through 7 and this hypothesis, we make the simplifying as- 
sumption that X can be neglected. This introduces some error in E(ME) and, 
were we to compute it, a rather sizable error in V(ME), especially when p is 
large. With this approximation, we compute the expectation of f/I where I 
is an integer-valued random variable whose distribution is the convolution 
of K geometric distributions, each with its origin at 1 rather than 0. As the 
calculations are routine, we exhibit only the mean (over J channels) for the 
first three values of K :  



Since empirically E(ME) is approximately a power function of I,  with an 
exponent of about 0.3 in the case of loudness, since the dominant term ap- 
pears to be Jfp/(l - p), and since p/(l - p) is a power function (Eq. 26) we 
are led to conjecture that 

where 7 + 7 = 0.3, a constraint we maintain in our choice of constants. 
The further assumption that the effect of intensity and frequency contribute 

multiplicatively is pure speculation, and the choice of a logarithmic depen- 
dence on f in Equation 29 is entirely empirical. 

Our final hypothesis is: 

3. The number of IATs collected on each channel is adjusted so that the total 
time consumed is approximately a constant up to some limit, K,, determined by 
the size of a buffer store for IATs. 

It seems plausible that the nervous system either holds K constant independent 
of frequency or makes some sort of adjustment to maintain approximately 
constant times. The model does not fit the data if K is kept constant, so we 
were led to hypothesis 3. Of course, if the intensity levels were randomized, 
one suspects that a constant K would result. 

Letting K~ denote the threshold value of K ,  it follows that, since the number 
of pulse is one more than the number of IATs, for K 5 K,, 

from which Equation 30 is an immediate consequence. 

8. DISCRIMINATION FUNCTION 
FOR FREQUENCY 

The data on the discrimination of small changes in frequency are, if anything, 
less satisfactory than those for intensity. Three major papers (Harris, 1952; 
Nordmark, 1968; Shower & Biddulph, 1931) summarize how A f varies with 
f and I (but only for 30 dB SPL in Harris and 45 dB SPL in Nordmark). The 
results at comparable SPL and low frequencies differ by almost an order of 
magnitude. It is still not known what differences in method are crucial to 
these differences in performance. There is one optimistic note in that, although 
the values of A f differ considerably, their ratios at different frequencies are 
nearly the same. Figure 7 presents these data. 

At high frequencies the agreement is better, but Henning (1966) has chal- 
lenged all of these high-frequency measurements as being seriously influenced 
by artifacts. He demonstrated that above 4000 Hz, the discrimination of a 



FIGURE 7. 
AfversusJ The data are from the sources shown. The theoretical curve is Equation 37 
with the parameters given in the caption of Figure 5, e = 0.20, and 1\10 = 45 dB. 



frequency change is probably based largely on a change in loudness. The 
evidence is that when the intensity of the two tones is randomized, the accu- 
racy of frequency discrimination deteriorates markedly. For example, at 8000 
Hz the jnd is 16 Hz when the intensities are fixed and 100 Hz when they are 
randomized. No comparable change was observed at low frequencies, but one 
would not expect any since a change in frequency a t  low frequencies does 
not alter the amplitude of the signal appreciably. 

The only study of Af over the whole (I, f )  plane that we know of is Shower 
and Biddulph's. Since this study is the earliest, it exhibited the poorest dis- 
crimination, and the technique of signal variation employed is very difficult 
to model, we remain very unsure how Af in its usual sense depends on I. 

Turning to theory, we first recall that Wever (1949) argued from various 
sorts of data that place mechanisms probably account for the discrimination 
of frequencies above approximately 2000 Hz and periodicity mechanisms 
probably are involved for lower frequencies. Such a break is almost certainly 
enforced by the inability of a nerve to fire faster than about every msec. 
Turning to our low-frequency model given in Equation 1, we see that if I were 
known, then 

IAT 1 X I - = - = - + -  
I f 1  

estimates the period, l/f, of the input signal. It is equally clear that given a 
reasonably large sample of IATs-one from each active channel should do- 
the variability due to X is so small that I can be determined correctly for each 
IAT. (This would not be true if the modes of the IAT distribution overlapped.) 
If we let T be the average value of T over JK IATs, then it is easy to show 
(Luce & Green, 1974) that 

where 
rn 

$(q) = C qi/i2 = - dx. 
r = l  

Defining d/' as the difference in means divided by their (approximately com- 
mon) standard deviation, 

Solving for A f with d/' = 1 yields 
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where the approximation is justified because 0 0.2 and [4(q)/q]'I2 has 
a/6' I2 as its maximum value. Substituting p from Equation 28, J from Equa- 
tion 29, and K from Equation 30 in Equation 33, and using the constants 
listed in the caption of Figure 6 together with 8 = 0.20 yields the theoretical 
curve shown in Figure 7. 

It is worth noting that the portion of the theoretical curve for low intensities 
decreases with increasing intensity; however, after K reaches K, frequency 
discrimination for large f is predicted to deteriorate slowly with intensity. 
There are recurrent indications of this in Henning's (1967, Fig. 3) work, but 
it has never been carefully studied. 

We conclude that the same set of constants is adequate to account for fre- 
quency as well as intensity discrimination. 

9. OTHER SOURCES OF VARIABILITY 

Up to this section, we have attempted to account for behavior in terms of the 
sum of three sources of variability: that due to the stimulus itself, that arising 
from its transduction into neural impulses, and that occurring during the 
transmission of these neural impulses up to the point at which the decision 
is made. Specific assumptions about the nature of these kinds of variability 
allowed us to predict a variety of classical psychophysical data. In particular, 
most of the data for simple discrimination and their corresponding response 
latencies can be analyzed from this point of view. Whether or not all simple 
discriminative behavior can be dealt with so simply is problematical, but 
many theorists, including us, are optimistic. 

We would be remiss, however, to leave the impression that this is the only 
variability that ever arises or, indeed, that this approach can be extended to 
more complicated psychophysical tasks without introducing some funda- 
mentally new assumptions. Although a full discussion of this topic is not 
appropriate here, we will review briefly some work both because it is timely 
and relevant and because it suggests that variability in applying the decision 
rule itself is necessary to explain some psychophysical behavior. 

Consider an absolute identification, or categorization, experiment in which 
one of N signals is presented on each trial and the subject attempts to identify 
which it is. Assuming that the process is stationary and independent from 
trial to trial, then the basic data can be presented in an N X N matrix of 
probabilities where the ij entry is the relative frequency of the jth response 



when the ith signal is presented. In most such studies the signals are chosen 
from some ordered continuum, such as intensity level of a pure tone, and 
the responses are the first N integers assigned to the signals so that their 
natural order corresponds to the order of the sensory continuum. 

One question is how to measure accuracy so we can study how accuracy 
depends on the number, spacing, and range of the signals. The most obvious 
measure, percentage of correct responses, has the drawback that as N in- 
creases it decreases without in any way taking into account how many re- 
sponses were almost correct-it is insensitive to the magnitude of the errors. 
More satisfactory measures use more than just the main diagonal of the data 
matrix. Perhaps the most famous of these is the information measure; below 
we will describe a dl-type of measure. 

A remarkable, but ubiquitous, finding of this area is that the information 
transmitted grows with N up to about N = 7, at which point it reaches an 
asymptote or, perhaps, a maximum (Miller, 1956). Note that we have stated 
this entirely in terms of the number of signals without qualification as to 
their spacing or range. To a good first approximation, such qualification is 
immaterial: various signal spacings and ranges have been studied and the 
results are surprisingly insensitive to those choices, except when the range is 
small, say, less than 20 dB in auditory intensity. 

Recently, Durlach and his collaborators (Braida & Durlach, 1972; Durlach 
& Braida, 1969; Pynn, Braida, & Durlach, 1972) have embarked on a series 
of experimental and theoretical investigations of this and related paradigms. 
Although their data-analysis procedure is somewhat unconventional-a 
modified version of Thurstone's successive intervals rather than, for example, 
information theory-their main findings are consistent with earlier studies. 
Their basic measure is obtained by computing over all responses (with esti- 
mated probabilities not too near 0 or 1) the values of d' for each pair of 
adjacent signals. The sum of these values over all adjacent pairs of signals 
is their overall measure of accuracy. Among other things, they find that if N 
is held fixed and the signal range is increased, this measure reaches an 
asymptote. 

To account for this at a theoretical level they assume that the variance 
which enters into the computation of d' for each pair of adjacent stimuli has 
two independent sources. The one is the usual variability in the representation 
of the signal, which is what we have discussed in the bulk of the chapter. 
The other source they interpret as due to fallible memory; e.g., it might result 
from variability in the location of category boundaries from trial to trial. 
Their crucial new assumption is not that imperfect memory introduces vari- 
ability, but that this variance is proportional to the entire square of the range, 
measured in dB, of the signals being used. Why this should be is not obvious. 

To make their theory quite explicit, we list its three principle features. First, 
signals are represented as normally distributed random variables with con- 
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stant variance (the latter is not true in a pulse model). Second, the mean of the 
signal random variable is assumed to be a logarithmic function of signal 
intensity (this also is not true in our pulse model, where a power function 
growth was postulated). Third, in computing d' the effective variance consists 
of the sum of the constant variance of the signal representation and that of 
the category boundaries, which is assumed to be proportional to (log IN/[#,  
where Il and IN are the intensities of the least and most intense signals, 
respectively. 

According to this theory, for fixed N the total accuracy asymptotes with 
increasing range because the increase in variance in the category boundaries 
more than offsets the increase in discriminability in the signal representation 
due to increased signal separation. Indeed, these postulates account for the 
bulk of their data, but some notable discrepancies do  exist. Without going 
into them in detail, they seem to result from, first, difficulties in the logarith- 
mic assumption and, second, from what they interpret as 'edge' effects that 
arise from the end signals. The regularity and, in some experiments, the size 
of the discrepancies invite alternative models, but so far none has been sug- 
gested. We have attempted to construct a pulse model of the type discussed 
in this chapter, but we are not yet satisfied with it. Our concern has been to 
find some way to account for the enlarged variance without being forced to 
assume that it grows directly with range.= 

The simple reaction-time situation, in which the subject attempts to detect 
the onset of a signal as rapidly as possible, is a second case when the natural 
decision rule introduces considerable additional variability. As this topic is 
important in its own right, we devote the final section to it. 

10. SLMPLE REACTION TIMES 
TO WEAK SIGNALS 

It has long been believed that the distribution of reaction times contains 
information about the decisions being carried out when the subject senses the 

Note added in proof. Our work on the variability of magnitude estimates, reported in 
Green and Luce (1974), has led to a hypothesis that seems to be consistent with these 
results. We postulate a band of attention, about 20 dB wide for auditory intensity, which 
can be located anywhere. Signals falling in the band give rise to samples of IATs that are 
about an order of magnitude larger than the samples for signals outside the band. Thus, 
as the range of signals increases, the probability of a small sample and hence increased 
variability also increases, possibly accounting fo; the apparent effect of range in degrading 
absolute identification below that oredicted from two-signal data. Of course. detailed work 
will be needed to verify that this Is in fact the explanajion. Luce and  ree en (1974a) also 
pointed out that such an attention mechanism may underlie the sequential effects observed 
in both magnitude estimation and absolute identification experiments. 



reaction signal, but until comparatively recently little has come of attempts to  
extract that information. One difficulty is that the temporal reflections of the 
decision process are almost certainly badly obscured by the ripples resulting 
from other delays in the overall system unless, of course, the decision process 
is slow relative to  these other delays. Almost paradoxically, reducing the sig- 
nal intensity serves to amplify the decision process. For a clear and audible 
signal, the pulse rates are high, decisions rapid, and what we observe-a fairly 
peaked density whose mean is perhaps 15@200 msec and whose standard 
deviation is about 10 percent of that-is mostly the result of delays other than 
those introduced by the decision process. By contrast, for a weak or, because 
of masking noise, barely audible signal, the pulse ihtes are low, decisions 
slow, and what we observe-a broad distribution whose mean is as large as 
1000 msec and standard deviation is of the same mkgnitudeis  some mix of 
the decision latency and other, fixed and variable, residual latencies. Observe 
that such an increase in the standard deviation is to be expected under the 
hypothesis that the basic intensity information is encoded in a near-Poisson 
pulse train since the mean and standard deviation are equal in an exponential 
distribution. 

This general view is probably not very controversial; however, the exact 
realization of these assumptions differs considerably from one theory to an- 
other. All of our own models have explicitly assumed that the decision process 
is statistically independent of the residual one. In particular, we assume that 
changes in the signal intensity affect the IATs and so the decision process, but 
they do not affect the residual process. This is controversial. By independence, 
the distribution of reaction times is the convolution of the distributions of the 
decision and residual processes. Other closely related views are the classical 
one of an irreducible reaction time and Donders' (1868) method of sub- 
traction, which in recent times has been refurbished and exploited effectively 
by Sternberg (1969). These are weaker models because they assume only 
additivity, not independence, of the two (or more) stages. 

In all such models, no matter what the detailed assumptions are, the effect 
of the residual latency is simply to obscure the decision process. One way or 
another, one attempts to evade this noise. A key idea, first pointed out in 
this context by Christie and Luce (1956) and recently exploited by us, is that 
the classical transforms-e.g., Laplace and Fourier-onvert a convolution 
into a product. Let capital letters stand for the Fourier transform of the lower 
case density, i.e., 
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then 

F(w) = L(w)R(w), 

where G is the density of the decision process and r that of the residual one. 
Given a theory of the decision process, we can derive explicit expressions for G 
or L which, however, will depend on several parameters that must be esti- 
mated from the data. One such parameter is the pulse rate. Two approaches 
suggest themselves, and there may be others. 

Assume for the moment that we have estimates of the parameters. In the 
one approach we form the histogram that approximates f, smooth it, and 
then obtain its transform P. Substituting the estimated parameters into the 
decision theory yields an estimate of L, e. And so by Equation 35 we estimate 
R by i? = P/e, and then by taking the inverse transform, we obtain 3. In 
other words, given the data and estimates of the parameters of the theory, 
we determine what the residual density must be in order for the theory to 
yield the observed data. Our interest is not in r per se, but rather in whether 
what we compute is a possible density function. In Green and Luce (1971) 
we actually carried this out. The theory studied there, which postulated that 
the occurrence of pulses is treated as evidence that the signal is present, led 
to a distribution function with two free parameters. They were estimated by a 
method described below. When we solved for F we found a function that had 
a mean of about 300 msec and that was appreciably negative in the region 
from about 400 to 500 msec. From data on intense signals we know that this 
mean is from 100 to 150 msec too large and, of course, the negative region 
is inconsistent with it being a density function. So we concluded that that 
theory of the decision process is wrong, and we were led to the IAT theories 
discussed earlier. 

It should be noted that this method of analysis, and any other involving 
transforms of empirical data, is beset with an inherent difficulty. Considerable 
effort must be expended to avoid the so-called Gibbs phenomenon-high- 
frequency oscillations resulting from the discrete jumps that are inherent in 
histograms-but without losing all resolution. We used a running average 
on the histogram to suppress some of the discontinuities, but obviously that 
introduces some temporal smear. Further theoretical work is needed on how 
best to effect the compromise before this can become a practical technique 
of analysis. 

A second approach is to use very intense signals to estimate i? (assuming 
that the decision time is negligible) and then to compare the fit between 
e = P/i? and L. This raises the question, to which we do not know the an- 
swer, of how one best evaluates the quality of fit between transformed data 
and the transform of a theoretical distribution, i.e., between I!. and L. So far 
as we know, mathematical statisticians have not formulated an answer to 
this. 
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Aside from this (apparently) unresolved question of goodness of fit in the 
transformed domain, two related problems remain. First, we wish to formu- 
late a plausible decision rule for detecting a change in the intensity parameter 
of a Poisson process and from that to derive the form of the theoretical 
distribution 4 (or its transform L). Second, with that in hand, we need to 
arrive at plausible ways to estimate the parameters of the model, especially 
the noise and signal Poisson parameters. In practice, we only have incomplete 
information about 4, but just enough to permit crude estimates of the 
parameters. 

As before, we shall assume the simplest decision rule, namely, that an esti- 
mate of pulse rate is compared with a criterion, and the subject responds 
whenever he has evidence that the pulse rate has increased, which suggests 
that the reaction signal has been presented. Since the subject is under time 
pressure, we assume that he uses the smallest sample available, namely, one 
IAT. But unlike the other models we have examined, the number of IATs 
actually observed before he initiates a response is a random variable, and 
this fact makes the analysis considerably more difficult. The key result is that 
(under certain conditions) the tails of the decision distributions (i.e., for 
t > 7') are approximately exponential, with time constants that are simple 
functions of the Poisson parameters of the noise and signal-plus-noise pulse 
trains. 

To fit such a model to data, we must estimate these Poisson parameters. 
In practice, we have tried only one way and it is not completely satisfactory. 
Suppose, as seems plausible, that the residual latencies are bounded in the 
sense that for some r > 0, r(t) = 0 for t 2 7. If we substitute this together 
with the exponential character of the decision process into Equation 34, we 

see that f (t) - e-ut /6 ew(x) dx, t > r + r'. So the tails of the observed 

distributions should exhibit the same exponential character as the decision 
distribution when the residual times are bounded. Obviously, the same argu- 
ment is approximately valid if the residual times are not actually bounded, 
provided that large times are exceedingly rare. 

The data in Figure 8 show that the tails of the response-time distributions 
in a simple reaction-time design (with response terminated signals and expo- 
nentially distributed foreperiods) are very nearly exponential. So we may 
use these data to estimate the Poisson parameters for noise, V, and for signal 
plus noise, p. The ratio of these estimated parameters as a function of signal 
intensity in dB is shown in Figure 9, and we see that to a good approximation 
it is a power function of intensity. We used this fact in deriving Equation 26. 
Luce and Green (1972) provide an argument, based on the assumption of 
processing on multiple channels, to show that the exponent estimated from 
Figure 9 is consistent with that estimated from ME data; we do not reproduce 
that argument here. 



0 10 2 0 3 0  0 10 2 0  3 0  
T IME CONSTANT UNITS 

FIGURE 8.  
Comparison of tails of distributions of time and false alarm to weak signal with best- 
fitting exponentials (Luce & Green, 1970, Figs. 6, 7). 
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PICURE 8. (Continued) 
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FIGURE 9. 
Ratio of Poisson parameters, estimated from tails of simple RT distributions, versus signal 
power to noise density in decibels (Luce & Green, 1970, Fig. 9). 
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